
1

A Possible Time-Series Object

Don Sawyer, Andrew Davis, John Garrett, Carrie Gonzalez, David Han, Joe King, Mike Martin,
Tom McGlynn, and Formats Evolution Process Committee

Version 14, 00-12-06

http://ssdoo.gsfc.nasa.gov/nost/fepc/time-series-object.html

2

Table of Contents

1. OBJECTIVES AND APPROACH... 4

1.1 HOW TO READ THE PAPER .. 5
1.2 RESPONSES TO THE PAPER .. 5

2. TIME-SERIES OBJECT ... 6

2.1 CONCEPTUAL VIEW .. 6
2.2 QUESTIONS TO BE SUPPORTED .. 8

2.2.1 Proposed Required Questions for Any Data Object... 8

2.2.2 Proposed Required Questions for Time-series Object ... 9

2.2.3 Proposed Optional Questions for Time-series Object.. 9

3. EXAMPLE IMPLEMENTATIONS SUMMARIZED... 10

3.1 MODEL DATA SET... 10
3.2 PARTIAL MAPPING TO THE TIME SERIES OBJECT VIEW .. 10
3.3 CDF IMPLEMENTATION .. 11

3.3.1 CDF/TSO Summary.. 12

3.4 HDF4 IMPLEMENTATION ... 13
3.4.1 HDF4 Summary.. 13

3.5 IDFS IMPLEMENTATION ... 14

3.5.1 IDFS Summary ... 16

3.6 FITS IMPLEMENTATION... 17
3.6.1 FITS Summary... 18

3.7 PDS LABELS IMPLEMENTATION .. 19

3.7.1 PDS Labels Summary... 20

4. IMPLEMENTATION INSIGHTS ... 22

5. TIME-SERIES API INTRODUCTION... 24

5.1 APPLICATION PROGRAMMING INTERFACES (APIS)... 25

5.2 TRANSLATION OF BINARY DATA TO STRING .. 28

APPENDIX A: EXAMPLE RESPONSES TO THE QUESTIONS ASKED IN SECTION 2................................ 31

A.1 FITS IMPLEMENTATION RESPONSES.. 31

A.2 HDF4 IMPLEMENTATION RESPONSES .. 33

APPENDIX B: EXAMPLE IMPLEMENTATIONS DETAILED.. 36

B.1 CDF IMPLEMENTATION ... 36
B.2 HDF4 IMPLEMENTATION .. 41

B.3 IDFS IMPLEMENTATION... 45
B.4 FITS IMPLEMENTATION ... 54
B.5 PDS LABELS IMPLEMENTATION... 58

APPENDIX C: TIME-SERIES API DETAIL ... 61

C.1 APPLICATION PROGRAMMING INTERFACES (APIS).. 61

3

C.2 TRANSLATION OF BINARY DATA TO STRING.. 65

C.3 LOW LEVEL APIS ... 67
C.3.1 TSO Handling APIs ... 67

C.3.2 TSO Record Handling APIs... 69

C.3.3 TSO Record Field Handling APIs ... 73

C.4 HIGH LEVEL APIS .. 84
C.4.1 TSO Record Handling APIs... 85

C.4.2 TSO Record Field Handling APIs ... 87

4

1. Objectives and Approach

At least two aspects of current "standard formats" and their associated software impede science
analyses. On the one hand, formats may not have all the needed or desired functionalities. On the
other hand, the multiplicity of formats renders multi-source data analyses (where various sources

chose to cast data in various formats) very difficult.

A Formats Evolution Process has been underway for many months now to try to address and

possibly get beyond these issues. See http://ssdoo.gsfc.nasa.gov/nost/fepc/. One activity of this
process has been to define a "time series object" to better understand some of the underlying issues.

The purpose of this paper is to identify a possible definition for a general time-series data object,
and to explore some of the implications for its implementation in several different formats that have
been used for multiple science data sets. This effort provides some insights into the underlying

formats themselves, and the degrees to which they need to be extended to support a general time-
series data object. Further, if the community decides that defining a general time-series data object
is a useful thrust, there could be a subsequent time-series data object standardization effort that

should result in the following benefits:

1. Data product developers will know what metadata is needed to support the standard time-series

view of their data, and including it will enable new data products to be more useful to researchers
using existing application software.

2. There can be a set of standard interfaces supported by formatting system software (e.g.,
possible extensions to, or built on top of, HDF, CDF, IDFS), which then allows applications to
work in a standard way with time series data from a variety of instruments and across disciplines.

3. The understanding of the time aspects of data made available as a time-series object will already
be known to data users/researchers and will therefor reduce their learning time in handling new

data products.

The Formats Evolution Process Committee (FEPC) (see http://ssdoo.gsfc.nasa.gov/nost/fepc/) has

developed this draft 'time-series' object as a part of its overall objective of improving the ability of
the science community to exchange, use, and preserve information in the context of multiple
formats. The FEPC does not expect this work to be a standard, but to point the way if this proves

productive.

5

1.1 How to Read the Paper

A single time-series object (TSO) can not do all that anyone might want. Each potential user may

have some favorite requirements to be fulfilled. Necessarily a particular conceptual view of the
important aspects of a TSO are needed. This is presented in section 2.1 and should be of interest to
all readers. Then, a list of questions that a TSO might be expected to be able to answer is

postulated in section 2.2. The TSO might answer these question by virtue of including the
necessary information within. It might also answer these questions from an application API point
of view, in the form of what inputs should one be able to give it and what type of results should one

expect to get back. Our approach focuses on a minimum set of time-related services, but allows
additional services to be added as needed. This helps identify the minimum metadata that is needed
for a TSO and should be of interest to all readers including science end users and software

developers. A full standardization effort would flesh this out more thoroughly and it may or may
not include a standard API. Appendix A provides potential responses to the questions of section 2.1
from the perspectives of the FITS and HDF4 implementations.

Section 3 provides summarized examples of how a TSO might be implemented using some well
known formats. Full details are given in Appendix B. Those who are familiar with one or more of

these formats may be especially interested to see the implications of the approaches taken.

Section 4 gives insights from the implementations and should be of broad interest.

Section 5 provides an introductory views of how various APIs for a TSO may appear. First it
provides a view of a set of low level APIs that allow programmers to manipulate the TSO and the

various fields that comprise it. Then, a high level API is provided that supports directly finding the
answers to the key TSO questions identified in section 2. Section 5 is particularly interesting to
those who implement access software, and those who would be interested in using such TSO

specific software. The detailed API specifications are given in Appendix C.

1.2 Responses to the Paper

Comments on all aspects of this paper are of great interest to the FEPC. They can be sent to
fepc@nssdc.gsfc.nasa.gov, or to any of the individual FEPC members listed on the FEP Web site.

6

2. Time-Series Object

2.1 Conceptual View

It is important to note that the material to follow provides a conceptual view and is not an

implementation. How the necessary information is actually organized and stored is not addressed
in this section.

Key Time

Field 1
Processing
Duration

Field 2
Processing
Duration

Field m
Processing
Duration

Field 1 Time
Offset

Field 2 Time
Offset

Field m Time
Offset

Field 1

Field 2

Field m

Field 1 Time
Relationship

Field 2 Time
Relationship

Field m Time
Relationship

Etc

TSO Record 1

TSO Record 2

TSO Record 3

Figure 1: Time-Series Object Conceptual View

1. A Time-Series Object appears (conceptually) as a sequence of records, as shown in Figure 1.

(Note: It may not be implemented as a simple sequence of records, however.)

7

2. Each record contains a 'key time' value (including date), which is monotonically increasing or
decreasing from record to record throughout the sequence.

3. Each record also contains other data, of arbitrary complexity, which may vary from record to
record. This data can be viewed as a sequence of fields, but may also be viewed as groups of fields
which map to various types of objects such as images, vectors, matrices, etc. It is not necessary to

call out all detailed structure, so that a whole image may be viewed as one field if so desired.

4. Each record also contains one or more 'processing durations'. Each such processing duration

gives the time span over which one or more of the other data fields has been determined. For
example, a data field may be a 1 minute average of other values, in which case the 'processing
duration' would be 1 minute. It may, of course, be zero as well. The 'processing duration' is known

for all data fields, identified as such, in the time-series object.

5. Each record also contains one or more 'time offset' values. Each data field has a time offset

value which relates, through the use of addition, its time of observation/determination to the
record's key time value. (See Figure 2 for an example.)

6. The relationship of the key time, plus time offset, to each fields processing duration is known
because either it is given explicitly or it is a part of the standard. Possible relationships include:
 - For each subset of the data fields, the key time, after being augmented with the relevant time

offset value, corresponds to the beginning, the middle, or the end of the associated processing
duration value. Figure 2 is an example where the offset is to the middle of the processing duration
for data fields 'x' and 'y', but to the beginning of the processing duration for data field 'z'.

 - Other ways to define the relationships are possible, but are not explored here.

7. The meaning of each field, of key time, of processing durations, of time offsets, and the units

associated with these entities, is known and described. This is a general requirement intended to
ensure that the information that comprises the TSO is at least minimally understandable.

8

2.2 Questions to be Supported

These questions can be viewed as motivating the necessary data or metadata to be available as a
part of the time-series object, and/or as suggesting the types of values that an API might require.

2.2.1 Proposed Required Questions for Any Data Object

1. What are the fields available (when looking across all the records)? (Give names)

2. What is the definition of field 'x'.

3. What is the representation type for field 'x' (e.g., integer, real, image array, character string)

4. What are the units for field 'x'?

Key Time

Figure 2: Time Relationships Example

time

9

2.2.2 Proposed Required Questions for Time-series Object

1. What is the meaning of the key time as used in this object?

2. What is the start date/time and what is the end date/time for this object?

3. What is the processing duration for data field 'x'?

4. What is the offset time for data field 'x'?

5. How does the offset time relate to the processing duration for data field 'x'? (e.g., 'mid point')

6. Get the records for key times between time a and time b.

7. Get the values for fields 'x' and 'y' for the key tims between time a and time b.

2.2.3 Proposed Optional Questions for Time-series Object

1. Get the values for fields 'x' and 'y' when their individual times are between time a and time b.

2. How many records exist between time a and time b?

3. What is the maximum record size in bytes?

4. How many unique data field types are present in the implemented object?

10

3. Example Implementations Summarized

In order to clarify both conceptual and practical issues, this section provides some summarized
examples of how a TSO might be implemented using a few data formats. For illustrative purposes,

a model data set is defined in section 3.1 and then mapped into the TSO conceptual view in section
3.2. Sections 3.3 through 3.8 provide summaries of example implementations of the TSO model
data in various formats. The full examples are given in Appendix B. These implementations

reflect only some of the ways these formats could be used to hold the TSO model data.

3.1 Model Data Set

The data set consists of the following:
• One year of data.
• One day of data per data file.

• One minute of data in each data record.
• Gaps in the data, where minutes with no data have no records.

The data in the record are:

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

Relative to offsets from the record's time tag, words 3-14 have offsets of 0, 5, 10, ... 55 sec. For
word 15 the record's time tag designates the start time (not mid or end or other time) for word 15's

"processing interval."

3.2 Partial Mapping to the Time Series Object View

11

The model data set of section 3.1 is mapped to a TSO view to provide a consistent baseline for the

implementations that follow. Where the processing duration is zero, the relationship of the duration
to the associated time is arbitrarily set to 'Begin of Duration' . No assumption is made as to
whether there will be one or multiple TSO objects resulting from the application of the TSO view

to the model data. This is an implementation decision.

• TSO record = data set record

• TSO = sequence of TSO records, covering the year (Note: Gaps in the data result in gaps in the
TSO record sequence. Actual implementations may handle gaps differently.)

• Time Order = ordered with increasing values of the time tag

• Key Time = time tag

TSO Field Matrix:

3.3 CDF Implementation

The model data set is implemented using CDF's (Common Data Format) Variables and Attributes.
Variable is an entity that represents/contains data, and attribute is the mechanism for storing
metadata. There are two types of attributes in CDF: global and variable. Global attributes are used

to describe a CDF file/data set (e.g. data set creator, file history, etc.) and to hold values that are
common/global to the data set. Similarly, variable attributes are used to describe or provide
additional information about variables. One or more variable attributes can be attached to a

variable. For example, a variable can have MIN and MAX attributes to represent the minimum and
maximum values allowed for this variable, and it can have a text description of the variable.

12

3.3.1 CDF/TSO Summary

TSO Objects: The TSO object is implemented as a single CDF file containing the year's data, or it

could be broken into multiple TSO objects covering fractions of the year. It simply depends on
how much data is loaded into a given CDF file.

TSO Object Identification: The TSO object is identified as such by a global attribute
"ObjectTypes".

TSO Records: A TSO record is comprised of a CDF record containing the defined variables with
their attributes, together with the CDF global attributes needed to complete the TSO record
information. Note that each TSO record logically incorporates the same global attributes. The

CDF record has one variable for each of spacecraft position, count rate, and density. The meaning
and units for these variables are given by the associated variable attributes.

TSO Time Order: TSO time order is given by a CDF global attribute.

TSO Key Time: Key Time is given by a CDF character variable KeyTime. A global attribute is

used to state that the time order is 'increasing'. KeyTime meaning is given by an associated
attribute.

TSO Offsets: TSO offsets are implemented as CDF variable attributes for the position vectors and
for the density. For the count rates, an attribute is used to specify the offset for the first of the 12
rates, and offsets for the other rates must be calculated by using the 'time increment' attribute

associated with the count rate variable. The units for the offsets, and their meaning, are given by an
associated global attribute. The association is given by pre-pending a 'g' to form the global attribute
name. This is a local convention.

TSO Processing Durations: TSO processing durations are implemented as CDF variable
attributes for position, count rate, and density. The units for the durations, and their meaning, are
given by an associated global attribute. The association is given by pre-pending a 'g' to form the

global attribute name. This is a local convention.

TSO Field/Time Relationships: TSO field/time relationships are implemented by CDF variable
attributes for position, count rate, and density. The allowed values for the relationships, which are

13

reasonably meaningful, are given by an associated global attribute. The association is given by pre-

pending a 'g' to form the global attribute name. This is a local convention.

Other: Missing data are given some type of fill value, not defined here.

3.4 HDF4 Implementation

We use two HDF building blocks to implement the TSO in HDF - Vgroups and Vdatas. Vgroups
are generic grouping elements allowing a user to associate related objects within an HDF file. As
Vgroups can contain other Vgroups, it is possible to build a hierarchical file. Vdatas are generic list

objects. Data is organized into "fields" within each Vdata. Each field is identified by a unique "field
name". The type of each field may be any of the basic types that HDF supports. Fields of different
types may exist within the same Vdata.

For this example, Vgroups are not very important. If there were data from several different
instruments within the data file, one could define a Vgroup for each instrument, for example. In any

case, within a Vgroup we can define a Vdata, and within the Vdata we can define the fields into
which the data is to be organized. So, there will be a correspondence between the Vdata fields and
the Words in the model data set.

We use HDF File Annotations and HDF Object Annotations and HDF Attributes to record
metadata within the HDF files. Any generic HDF data browser tool should be able to display all

annotations and attributes contained within any HDF file.

HDF annotations are basically containers into which one can dump short text descriptions. File

annotations are used to record global information about the dataset. Object annotations can be
attached to Vgroups or Vdatas or other objects within a HDF file. We would attach an object
annotation to the TSO Vdata that would describe the Vdata fields.

HDF attributes each have a name, a data type, a number of attribute values, and the attribute values
themselves. Any number of attributes can be assigned to either a Vdata or any field within a Vdata,
as long as they are named uniquely.

We would use HDF attributes to define units for the Vdata fields, offsets for the count-rates,
MAX/MIN limits, etc.

3.4.1 HDF4 Summary

14

TSO Objects: The TSO object is implemented as a single HDF4 file containing the year's data, or

it could be broken into multiple TSO objects covering smaller time periods.

TSO Object Identification: HDF files can contain more than one kind of Vgroup or Vdata. The

TSO object is identified as such by the name given to the TSO Vdata when when the HDF file is
written, and by the Vdata annotation.

TSO Records: A TSO record is comprised of a HDF Vdata instance containing the defined fields.
The field attributes, and the file and object annotations round out the information needed to
complete the TSO record. The meaning and units for the Vdata fields are given by the associated

attributes, and the Vdata annotation.

TSO Time Order: TSO time order could be specified in the Vdata annotation. However, that

would not actually stop someone from writing out records in whatever time order she wishes. There
is nothing special about the time fields in the Vdata.

TSO Key Time: Key Time is given by the a Vdata fields year, day, hr, min. Additionally, the
fields fp_year, fp_doy, and Epoch are available.

TSO Offsets: TSO offsets are implemented as HDF attributes for the position vector components,
the count rates, and the density.

TSO Processing Durations and Field/Time Relationships: TSO processing durations
and Field/Time Relationships are implemented as HDF attributes.

Other: Missing data can be handled by inserting records containing fill data for all but the Key
Time variables, or not. The particular approach taken would be documented in the annotations.

3.5 IDFS Implementation

There are various ways in which the model data set can be stored under IDFS, which is probably a

statement that can be made by other formats as well. Under IDFS, you store the RAW data and the
procedures to convert that raw data into geophysical quantities. That is not to say that computed
data cannot be stored under IDFS; it is simply that the strength of IDFS is in the ability to modify
the procedure for data conversion into physical units without the need to re-process all data sets

since the raw data is what is stored.

15

With IDFS, data is grouped into virtual (or logical) instruments. A virtual instrument is a group of

sensors that are linked together by commonality; therefore, it makes sense to treat the sensors
together. A virtual instrument can be classified as either a scalar instrument or a vector instrument.
A scalar instrument returns singular data quantities that are dependent only upon time and position.

An IDFS vector instrument returns one-dimensional data quantities that have a functional
dependence upon a single variable called the scan variable. The length of this 1-D vector is virtual
instrument dependent.

There appears to be three different types of data contained in the model data set: (1) the s/c location
(which are three scalar values), (2) the count rates consisting of 12 elements, and (3) density (a

scalar processed value). It is assumed that the spacecraft location and count rates are measurements
with discrete values. These data values should be stored in their raw form and the IDFS should
contain the necessary descriptions for converting the stored data numbers into geophysical

numbers. If the assumption is not correct and these are all computed quantities, they can be stored
as is within IDFS as data.

One possible scheme would be to subdivide the data into 3 virtual instruments, which are referred
to as (1) POSITION, (2) COUNT_RATE, and (3) DENSITY. In the IDFS paradigm, each data set
is written into two types of files: the header file (H) and the data file (D). File names link the

proper header and data files together. There is also a VIDF file and a PIDF file per virtual
instrument.

The Virtual Instrument Description File (VIDF) is a complete description of the virtual instrument.
The VIDF file is meant to be easily updated and to contain all of the data that may be periodically
updated due to either refinement in the instrument calibration or due to the degradation within the

instrument. There must be at least one VIDF file defined for each IDFS virtual instrument. If data
within the VIDF changes with time, for example calibration coefficients, additional VIDF files can
be defined. The VIDF file provides a general description of the measurements being stored in

IDFS format, and contains the data reconstruction parameters that are needed in order to transform
the raw data into physical units. In addition, the VIDF file provides information by which data
from the data file can be extracted, such as the size of data records.

The Plot Interface Definition File (PIDF) is an optional file under the IDFS format. The word
optional in this context means that it is not necessary in the use of any of the IDFS data access
software; that is, data in IDFS format can be located through the database, accessed and converted

to units without the PIDF file. If, however, you plan to use any IDFS based data display or analysis
software that has been developed by Southwest Research Institute (SwRI), the PIDF file is
required.

16

The PIDF is best described as an interface file between the IDFS VIDF definitions and a general
user interface to a display or analysis program, providing a large number of display attributes. The
PIDF file is an ASCII file that describes how to display the data in a meaningful way. The PIDF

file defines the units that are available for each sensor including the correct VIDF tables to apply,
how they are applied and the scaling limits (min/max) for each set of units.

The header files contain data which, for the most part, is slowly varying in time and need not be
repeated every data record. Each IDFS data record points to a header record that describes the state
of the instrument at that particular point in time.

3.5.1 IDFS Summary

TSO Objects: The model data would be split into three separate TSO objects corresponding to
spacecraft position, count rates and density. Each TSO object would be comprised of four file

types (data, header, VIDF and PIDF). There would be one data and one header file, each
containing one-year's worth of data. Other time intervals could be utilized, if the implementer saw
the need for smaller files. There would be one VIDF and one PIDF file defined for the whole time

duration of the model data set.

TSO Object Identification: Currently, there is no field or attribute that would identify a TSO

object. However, the VIDF file is "extensible" so additional identifiers (attributes) could be added
while preserving backwards compatibility for data sets already in IDFS that would not have the
newly defined identifiers.

TSO Records: A TSO record corresponds to the set consisting of a data record, the corresponding
header record, and information that is extracted from the VIDF file.

TSO Time Order: Within the IDFS paradigm, time does not have to be monotonically increasing
or decreasing; therefore, there is no attribute of this type in IDFS. Data that is jumping around in

time can be stored under IDFS. That is not to say that this scenario wouldn't be a nuisance for the
applications that are processing the data.

17

TSO Key Time: Key Time is split between the header record (YYY, DDD) and the data record

(milliseconds of the day).

TSO Offsets: TSO offsets are placed in the VIDF file and are utilized when the time tag is

computed. An exception is noted for the 12 count rate values, which were combined into a single
IDFS vector sensor. For the count rate values, the time offset values of 5 seconds for each element
of the vector in the VIDF file is split between the built-in attributes data_accum and data_lat, with

very little going to data_accum as the rates are taken to be near instantaneous observations.

TSO Processing Durations: TSO processing durations are handled by the built-in attribute

time_units, data_accum, data_lat, swp_reset and sen_reset. The set of values describes the current
accumulation times and is used to correctly time tag the given data values found within the data
records.

TSO Field/Time Relationships: TSO field/time relationships are implicitly defined in IDFS.
Within IDFS, the relationship is always defined as corresponding to the start (beginning) of the

processing duration value. Therefore, there is no explicit attribute or identifier to express the
relationship. Since the VIDF file is "extensible", an additional identifier (attribute) could be added
which would simply always be set to "start of duration".

Other: Gaps in the data are handled by missing records or by fill values, as defined in the VIDF
file.

3.6 FITS Implementation

The FITS data format is defined solely in terms of the data structure as stored on disk or tape
media. No standard FITS API exists although the format is nearly universally supported in
astronomy analysis software.

A FITS file consists of one or more Header-Data Units (HDUS). Descriptive information about the
data is placed in the header which completely defines the structure of the data that follows. The
header may optionally contain information on the semantics of the data, i.e., the unit, definitions of

the axes and so forth.

FITS addresses the relationships between the numbers in the FITS files and the physical units in

several ways. For some keywords values, e.g., coordinates, the units are defined in the FITS
standard. For other keywords the units are often given using comments. The relationship between
data elements and phyical units is more completely detailed using the FITS WCS conventions

18

which have now been submitted for formal ratification by appropriate national committees. For

scalar elements of tables, there are explicit scale, offset and unit keywords. For non-scalars --
either in tables or images -- FITS allows the user to associate each dimension (viewed as pixels) of
the object with a physical axis where appropriate keywords describe a linear transformation from

the pixel offsets to physical units.

For the reference data set, an implementation as a FITS table, or a set of tables is most natural. We

have implemented the reference data set using the same file structure as in the reference model,
with each day kept as a separate file. It would be perfectly feasible to organize all of the data in a
single file, or to have multiple HDU's with different days within a single FITS file.

To realize a FITS file with these data we would need to create a file with two HDU's. The first is a
dummy HDU where the header can contain descriptive information about the file, but will contain

no actual data. Table data is not permitted in the first HDU. The header for an HDU comprises a
series of 80 byte records terminated by an END record.

Following the primary HDU (with some padding required by rules originally designed to enable
FITS to work well with tape media) the header for the second HDU is written. This consists of a
series of required keywords which indicate the type and size of the table, and then definitions of

each of the columns. Only the actual data format of the column is required but much other
information about the column can be given.

After a small amount of padding the data would be written in big-endian, IEEE standard format.

3.6.1 FITS Summary

TSO Objects: The FITS standard describes only a data format. There is no standardized API to
the system and thus there are no FITS ‘objects’ as such. However FITS does allow for

encapsulation and organization of data in a series of FITS records. FITS does provide for several
keywords (notable the EXTNAME) keyword which can be used to define the type of data being
described. The HDUCLASS hierarchy convention used at the HEASARC is easily supported by

FITS. This provides for a loose inheritance hierarchy, but this is not a general standard. In this
implementation the model data are inserted into files, one per day. However they could have all
been put into one file either as separate HDU's within the file or as one large HDU.

TSO Object Identification: A HDU keyword could be defined for the first (dummy) HDU to
carry the information that this implementation is a TSO object.

19

TSO Records: FITS data is organized as a series of header-data units where each of these has a
standard structure - either a table or a multi-dimensional array. Each of these can be characterized
by a set of keywords in the header. Within each HDU a table may have any number of rows. The

TSO record corresponds to a HDU in this implementation.

TSO Time Order: For FITS tables time order can be specified in the headers using either an start

time and offset for each record - in which case the data must be monotonic (though possibly in
either direction) - or times can be specified explicitly for each record in which case data can be in
any order. The actual TSO order, whether increasing or decreasing, could be specified by a new

keyword in the first HDU.

TSO Key Time: Typically FITS tables include a key time column whose format is described in

ancillary metadata. The TSO key time is given by the first field of a table row and is in seconds
since 1980 (HEASARC convention).

TSO Offsets: Offsets for individual data within a record can be set using the nCDLTnn keywords.

TSO Processing Durations: FITS does not explicitly address series of non-contiguous pixels

within a record. However if a record contains a scalar value a combination of the nCDLT and
nCRPX keywords can simulate a single interval which begins and ends at an arbitrary offset from
the key time for the record.

TSO Field/Time Relationships: The nCDLT, nCRPX, and nCRVL describe the full relationship
between the field and the key time. However as mentioned above if the field is a vector in time,

FITS does not provide for gaps between the elements of the vector.

Other: There are no general conventions for missing data, although FITS tables have a convention

for NULL values and binary tables explicitly support the use of IEEE NaN’s (Not-a-Number) for
that purpose.

3.7 PDS Labels Implementation

The PDS label architecture is oriented to providing an archival description of a data file, rather than
to supporting display or manipulation of the contents. The PDS SERIES object which is used in

this example is a slight specialization of the PDS TABLE object, which is just a flat file of ASCII
or binary values (depending on the value of the INTERCHANGE_FORMAT keyword).

20

TSO implementation.

Offsets. These are normally specified in descriptive text. The sampling parameter keywords can

also be used to indicate a repeating group of regular observations as illustrated in the example.

File organization. The organization of data into physical files in the PDS architecture is done using

a set of PDS guidelines based on size and time. In this case each physical file is specified to be one
day’s worth of data records or 1440 records. There would then be conventions for directory names
and file names that would provide convenient access to a file containing a certain period of time.

Units. Units can be specified for a column object using the UNIT keyword. When units need to
be associated with a sampling parameter, the SAMPLING_PARAMETER_UNIT keyword is used.

Time associations. In general, time associations are specified within the description of a field.
There are duration keywords which can be used to indicate some time associations, like the

frame_duration which indicates an instantaneous measurement in the example.

Drop outs. There are no conventions for handling drop outs.

3.7.1 PDS Labels Summary

TSO Objects: The model data would be represented as a sequence of time series objects, with each
implemented as a file pair. One file carries the metadata attributes for the other file. The other file
carries one day's data where each record represents one minute of data. Directory and file name

conventions would tie the individual TSO objects into a single logical TSO for the year of data.

TSO Object Identification: The object is a TIME_SERIES which is a variant of TABLE. The

TIME_SERIES_TYPE keyword indicates that this is a FEPC_TSO.

TSO Records: A TSO record corresponds to a single row in the TIME_SERIES table. It stores 12
measurements and represents one minute of data.

TSO Time Order: The keyword TIME_ORDER_TYPE = ASCENDING, DESCENDING, N/A
has been added to indicate time order.

TSO Key Time: The keyword KEY_COLUMN = START_TIME is added to indicate that it is the
key field.

21

TSO Offsets: The offset of 5 seconds between count rate measurements is specified by the
sampling parameter keywords in the COUNT_RATE column.

TSO Processing Durations: PDS uses the keyword FRAME_DURATION. Durations are
specified in the field description for COUNT_RATE and DENSITY.

TSO Field/Time Relationships: TSO field/time relationships are specified with the sampling
parameter keyword embedded in the column definition. In the example the count rate has a
sampling parameter and the density has a sampling parameter. There is no way to specify two

sampling parameters (say time and energy) for a single column.

Other: Gaps in the data result in missing records.

22

4. Implementation Insights

It is clear that all the formats investigated, and probably most any others, are able to be extended to
support the concept of this general time-series object. What is of particular interest is the extent

and approaches by which the various formats are extended to meet this objective. While this can
not be fully investigated without actual prototyping, there are some insights which emerge from the
paper study. Further insights will no doubt arise from community review.

For some formats, such as CDF, there is no standard way to associate additional metadata,, such as
units or valid values, with attributes already associated with the primary data values. This may be

seen as an 'attributes of attributes' issue. In the case of the CDF implementation, this is overcome
by assigning additional global attributes and in their multi-part values also indicating with which
other attributes they are to be associated. In effect this extends the basic CDF data model but of

course it will not be recognized as such by the current CDF software.

From the HDF4 implementation, it is noted that in order to easily provide units in association with

the attributes, the attributes are shown as text. To make the attribute values more accessible to
manipulation, they could have been implemented as integers. In this case some new global
attributes could be used to relate the vgroup attributes with their units, much as was done with the

CDF implementation example. Current HDF4 software would, or course, not recognize these new
relationships.

From the PDS implementation, it was noted that software has not been implemented for all the PDS
objects. Therefore some of the needed information, such as relating sampling_parameter to count
rates, is not given explicitly or it may be incorporated into text description where it is not readily

accessible to software manipulation. This particular relationship could be implied by including the
sampling_parameter inside the count rate object.

IDFS is unique among the formats implemented in at least two respects. First, there are at least
three files for every TSO object and it takes multiple (three) TSO objects to hold all the TSO model
data for any given time interval. This increased complexity, however, gives it considerable

flexibility. Second, IDFS has built in capabilities for handling all the major components of the
TSO model. About all that needs to be added are a couple of attributes to say that the TSO is
present, and to indicate whether the data were increasing or decreasing in time. IDFS has associated

software that can combine the 3 TSO objects into a single 'derived' TSO and this would likely form
the basis for supporting a TSO API.

23

The FITS implementation takes advantage of the additional standardization prescribed by the

HEASARC project. As such, apart from a few additional keywords needed, it pretty well captures
the TSO. Since FITS does not have standardized APIs, TSO software access would be built on
existing implementations.

All of the formats, except PDS Labels, used as test implementations result in some re-formatting of
the original model data. It would also be interesting to explore the use of a more generic data

description language, such as EAST, in supporting a TSO.

24

5. Time-series API Introduction

[Note: For convenience of our readers, we have repeated Section 5 at the beginning of Appendix C
so that all the API information is available in one place.]

This section describes possible Application Programming Interfaces (APIs) that can be used to
accommodate the Time Series Object (TSO) requirements defined in section 2. It has been

estimated that for each of the formats discussed in section 3, the existing software support could
likely be the basis for the types of services described below.

An Object Oriented (OO) approach is employed in designing the APIs with the following
requirements and assumptions:

 - Support simultaneous access to multiple TSOs.
 - Data is organized and stored as described in Figure 1 (Time-Series Object Conceptual View)

of section 2 , except the actual data values are viewed as trailing the time relationships for each

record field.
 - The structure of each TSO record is consistent

Sections 5.1 and 5.2 provide an introduction to the detailed API definitions specified in Appendix
C. A fully consistent set of API definitions has not been attempted, but there is enough to give a
good idea of the approach.

Changes to be completed in future versions would include:
♦ In Section 2, we indicate that record sizes can vary. However some of the current API calls

assume the record size is constant, i.e. each record (logically) contains an instance for every
data field. If record size varied, then the data fields available in each record would vary. We
may choose to provide an API either for vary size records or fixed sized records or perhaps

even a API version for each case. The API version will affect what parameters are needed on
inputs for many of the TSOField calls. We will likely need to update parameters for some of
the calls whichever version of the API is provided.

♦ If data fields can vary within records or if the order of the data fields within a record are
unknown, then additional data field identification and/or data type information will be needed
in a number of the TSO field calls.

25

5.1 Application Programming Interfaces (APIs)

Each API returns a status code of Integer*4 to indicate whether the API is successfully completed.
If the API is not successfully completed, it should return a negative number. Otherwise it should

return the status code value of greater than or equal to 0 to indicate the successful completion of the
API. Status codes and their explanation texts are not documented in this document since they can
vary from implementation to implementation. The following describes the meaning for each of the

data types used in the APIs.

Data Type Description

String A character string that has one or more characters. The
size of a string is indicated by adding a colon after the
word‘String’ followed by the string size. For example,

String:20 represents a string that is 20 characters long.
Integer*4 4-byte signed integer
Real*4 4-byte floating point number

Void Data type used to represent any of the data types described
above. This data type is used to send or receive data
to/from an API and is equivalent to ‘void’ in C,

‘equivalence’ in Fortran, and ‘Object” in Java.

There are two categories of APIs: low level APIs and high level APIs. Low level APIs provide a

basic set of functions that allow users to create and manipulate TSOs, TSO records, and TSO
record fields. High level APIs allow users to perform more sophisticated functions such as “get the
records whose key time is between time A and time B”, “get the time range (begin and end time)

for the given TSO”, “get the values for fields ’x’ and ‘y’ for the key time between time A and time
B”, and etc. High level APIs make use of low level APIs as building blocks, often in combination
with some programming.

Naming Conventions
• Calls are mixed case with the first letter of each word capitalized all other letters are lower

case. (E.g., GetKeyTime, GetTSORec) (Note TSO is an abbreviation and is always
capitalized.)

• Calling Parameters are mixed case, the first letter of each word except the first is
capitalized, all other letters are lower case. (E.g., name, recNum, TSOId) (Note TSO is an

abbreviation and is always capitalized.)

26

• The following abbreviations are used consistently throughout in names of Calls and Calling

Parameters. These abbreviations are capitalized according to naming convention rules,
except that TSO is always in all upper case.
• Id - Identifier

• Num - Number
• Processing - Proc
• Rec - Record

• TSO - Time Series Object
• Calls named as CreateXxx will have a matching DeleteXxx call.
• Calls named as SetXxx will have a matching GetXxx call.

Low Level APIs
TSO Handling APIs

• CreateTSO (String:30 name, Integer*4 TSOId)
• DeleteTSO (Integer*4 TSOId)
• AskTSOId (String:30 name, Integer*4 TSOId)

• AskTSOName (Integer*4 TSOId, String:30 name)

TSO Record Handling APIs

• CreateTSORec (Integer*4 TSOId, Integer*4 recNum)
• DeleteTSORec (Integer*4 TSOId, Integer*4 recNum)

• AskTSORecSize (Integer*4 TSOId, Integer*4 recNum, Integer*4 recSize)
• SetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)
• GetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)

• SetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)
• GetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)

TSO Record Field Handling APIs

• CreateTSOField (Integer*4 TSOId, Integer*4 recNum, String:30 name,

Integer*4 dataType, Integer*4 numDims, Integer*4 dimSizes[], Integer*4 fieldId)
• DeleteTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId)
• SetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldID,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

27

• GetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)
• SetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldID,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

• GetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

• SetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)
• GetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)

• SetProcessingDuration Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
Real*4 procDuration)

• GetProcessingDuration (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 procDuration)
• SetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

String:18 timeRelationship)

• GetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
String:18 timeRelationship)

• SetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)

• GetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)
• AskTSOFieldId (String:30 name, Integer*4 fieldId)
• AskTSOFieldName (Integer*4 fieldId, String:30 name)

• AskTSOFieldType (Integer*4 fieldId, Integer*4 dataType, Integer*4 numDims,
Integer*4 dimSizes[])

High Level APIs

TSO Record Handling APIs

• ExtractTSORecs (Integer*4 TSOId, String:22 startTime,

String:22 endTime,String:variable TSORecs[])
• AskTotalTSORecs (Integer*4 TSOId, Integer*4 numRecs)
• AskNumTSORecs (Integer*4 TSOId, String:22 startTime, String:22 endTime,

Integer*4 numRecs)

TSO Record Field Handling APIs

28

• AskTSOFieldNames (Integer*4 TSOId, String:30 names[])

• AskTSOFieldIds (Integer*4 TSOId, Integer*4 fieldIds[])
• AskNumTSOFields (Integer*4 TSOId, Integer*4 numFields)
• AskNumDataValues (Integer*4 TSOId, String:22 startTime, String:22 endTime,

String:30 fieldNames[], Integer*4 numDataValues)
• AskTSOFieldsData (Integer*4 TSOId, String:22 startTime,String:22 endTime,

String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])

• AskTSOFieldsData1 (Integer*4 TSOId, String:22 startTime,String:22 endTime,
String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])

• AskStartKeyTime (Integer*4 TSOId, String:22 startTime)

• AskEndKeyTime (Integer*4 TSOId, String:22 endTime)

5.2 Translation of Binary Data to String

A TSO record logically consists of a key time followed by a sequence of heterogeneous fields. If
the user requests an entire TSO record, the requested record is returned in a contiguous block of

octets. For convenience this API includes calls that return the data as its logical Data Type.
However since the data type of one field can be different from other fields, the API also includes
calls where the system translates individual field’s data into a common format (i.e. string) before

returning the requested data. The following mapping guideline should be used for translating a
binary data to a string for consistent implementation of the TSO:

Data Type Translated String (left-justified)

1-byte, unsigned integer 3 bytes

1-byte, signed integer 4 bytes

2-byte, unsigned integer 5 bytes

2-byte, signed integer 6 bytes

4-byte, unsigned integer 10 bytes

4-byte, signed integer 11 bytes

4-byte, signed float (IEEE 754) 15 bytes

8-byte, signed float (IEEE 754) 25 bytes

As an example, if a field has two Integer*2 (signed) data values, say 1234 and 1244, then the
returned value would be the 10 character string ‘1234 1244 '.

29

Throughout this API, when a key time is expressed as a string, it will be a 22 character string in the

YYYYMMDDTHHMMSS.ssssss format where

YYYY = year,

MM = month,
DD = day,
T = the character"T" (separates date and time portions

HH = hour,
MM = minute,
SS = second

. = decimal point separating the integer and fractional portion of the seconds
(may be replaced by a space character if the entire fractional portion of a second is
replaced)

ssssss = fractional portion of second
(any number of the trailing digits may be replaced an equivalent number of space
characters)

When TSO Record Fields are input or output in String format, they will use the format shown

below.

Field Size (octets) Comments

Time offset 15
[base is
Real*4]

In seconds.
Left-justified.
Blank padded to correct length.

Processing duration 15
[base is
Real*4]

In seconds.
Left-justified.
Blank padded to correct length.

Time relationship 18 Contains one of the following
values:
 ‘start of duration ’

 ‘middle of duration’
 ‘end of duration ’

Note that the returned value is

padded with blanks if the length
of the string is shorter than 18.

Data Variable Size depends on how the field

30

data was declared and stored.

When TSO Records are input or output in String format, they will use the format shown below.

Field Size (octets) Comments

Key time 22 The key time

Field x
(Repeat once for each field)

Variable
48+data

Use field data format shown
above for each field

31

Appendix A: Example Responses to the Questions Asked in Section 2.

A.1 FITS Implementation Responses

How does FITS address the specific questions discussed for a time series object?

Here we discuss how they would be addressed within a single FITS HDU. If we wish to consider

a whole set of FITS files, it goes beyond the FITS standard.

2.2.1.1. What are available fields?

 Look at TTYPEn entries in the headers.

2.2.1.2. What is the definition?

 There is no requirement for a 'definition' of
a column. Typically these are given as
comments in the TTYPE fields.

Beyond this certain names are conventionally used.

2.2.1.3. What is the representation?

 Look at TFORM, TDIM keywords.

2.2.1.4. What are the units?
Look at TUNIT keywords.

2.2.2.1 What is the meaning of the key time used in this object?
 TIMEREF, TIMESYS, TIMEUNIT keywords (plus several

others that are defined in HEASARC conventions).

2.2.2.2 What are the start/end times?

 There are keywords available for specifying the minimum
and maximum values of a column, however they
are not required to be filled and rarely are.

Given the requirement that data be ordered in the time
series, it is easy to read the first and last records
since each record is of fixed length.

32

2.2.2.3 What is the processing duration for field 'x'?
 In most cases this would be given in the nTDLTm keywords.

However the FITS conventions primary define the

separation between pixels. If there is 'dead-time'
between observations (as in this reference model)
there is no conventional representation of that in FITS.

2.2.2.4 What is the offset time for data field 'x'?
 This is given by the nCRPXm and nCDLTm keywords.

2.2.2.5 How does the offset time relate to the processing duration?
 See comments above.

2.2.2.6 Get the records in a given key interval?
 This is an API issue, thus outside of FITS proper.

 If efficiency is an issue, some kind of binary seach
algorithm could be used, but FITS has no
special support for indexing.

2.2.2.7 Get fields for a given key interval?
This is an API issue, thus outside of FITS proper.

It should be straightforward to address.

2.2.3.1 Get fields within a specific interval?

This is an API issue. The implementation
will need to carefully look at the various nXXXXm
keywords.

2.2.3.2 How many records exist in an interval?
API issue.

2.2.3.3 What is the maximum record size?
 If variable length columns are not used, then

this is trivial. If variable length columns

are used, then it is easy to search for the
longest of these.

33

2.2.3.4 How many unique fields are present?

This may not be well posed. What does 'unique'
mean in this context. E.g., are the 12 rates
12 unique fields, or just a single vector-

valued field?

A.2 HDF4 Implementation Responses

Here are the HDF4 Answers to Questions to be Supported by the Time-series Object

2.2.1.1 What are available fields?
 This info can be found by looking in the Vdata annotation, or
 by using standard HDF library function calls.

2.2.1.2 What is the definition of field "x"?
 In HDF, there is no requirement for a 'definition' of

 a field, except to specify whether it is an int32 or a float64, etc.
 In this HDF4 TSO implementation, the definition is given
 in the the Vdata annotation and the field attributes.

2.2.1.3 What is the representation type for field "x"?
 This info can be found by looking in the Vdata annotation, or

 by using standard HDF library function calls.

2.2.1.4. What are the units?

 Found in the "Units" field attribute.

2.2.2.1 What is the meaning of the key time used in this object?
 Found in the Vdata annotation, and in the "Units", "Time
 Offset", and "Time Relationship" field attributes of the fields

 "year", "day", "hour", etc.

2.2.2.2 What are the start/end times?
 HDF does not require such information, but it could be

 an entry in the Vdata annotation.
 Given the requirement that data be ordered in the time

34

 series, it is easy to read the first and last records

 since each record is of fixed length.

2.2.2.3 What is the processing duration for field 'x'?

 Found in the "Processing Duration" field attribute.

2.2.2.4 What is the offset time for data field 'x'?

 Found in the "Time Offset" field attribute.

2.2.2.5 How does the offset time relate to the processing duration?

 Found in the "Time Relationship" field attribute.

2.2.2.6 Get the records in a given key interval?

 This is an API issue, thus outside of the HDF domain. At the
 ASC, we define another Vdata within the data file which
 contains a map (index) relating record numbers to Time. This

 enables our user software to support this feature.

2.2.2.7 Get the values for fields 'x' and 'y' for the key time between time

 a and time b.
 See 3.2.6 above. Extracting fields from given records is
 done using standard HDF library function calls.

2.2.3.1
 Get the values for fields 'x' and 'y' when their individual times are

 between a and b.
 This is an API issue. Additional software, calling the HDF 4 APIs,
 would be needed to return the data within the higher time resolution.

2.2.3.2 How many records exist between time a and time b?
 API issue. See 3.2.6.

2.2.3.3 What is the maximum record size?
 The records (Vdata instances) are of constant size. The
 size allocated for Vdata instances is obtained via a standard

 HDF library function call.

2.2.3.4 How many unique fields are present?

35

 Not sure what this means. You can find out what fields are

 defined in a Vdata via standard HDF library function calls.

36

Appendix B: Example Implementations Detailed

B.1 CDF Implementation

The model data set is implemented using CDF's (Common Data Format) Variables and Attributes.
Variable is an entity that represents/contains data, and attribute is the mechanism for storing

metadata. There are two types of attributes in CDF: global and variable. Global attributes are used
to describe a CDF file/data set (e.g. data set creator, file history, etc.) and to hold values that are
common/global to the data set. Similarly, variable attributes are used to describe or provide

additional information about variables. One or more variable attributes can be attached to a
variable. For example, a variable can have MIN and MAX attributes to represent the minimum and
maximum values allowed for this variable, and it can have a text description of the variable.

A CDF file can be created either by writing a program using CDF Application Prgramming
Interfaces (APIs), creating a CDF skeleton table, or using the CDFedit interactive CDF editor. The

easiest way to create a CDF file is by creating a CDF skeleton table that is an ASCII text file
template in which one can define variables, atrributes, and other information such as file and
variable compression methods to be used, text description of the CDF file/data set, data encoding

scheme, and etc. SkeletonTable, one of the CDF tools distributed as part of the standard CDF
distribution package, creates a skeleton table from an existing CDF file. Since the model data set is
simple and only requires Variables and Attributes for implementation, a simple CDF file (test.cdf)

that contains variables, attributes, and a few global atributes about the data set is selected (to
minimize editing), and a skeleton table is generated using the following command at the operating
system prompt:

 skeletontable test.cdf

The above command produces a file called test.cdf.skt. The test.cdf.skt file is edited using an
ASCII text editor to include the variables and attributes that are needed for the model data set. The
edited skeleton table is then fed into the SkeletonCDF utility, another CDF tool distributed as part

of the standard CDF distribution package, to generate the CDF file called TSO.cdf that contains the
Time Series Object (TSO) model data set. The following command is used to generate the final
CDF file:

 skeletoncdf -cdf TSO.cdf test.cdf

37

The file extension of .ext is not required when specifying the input file name that is supplied to the

SkeletonCDF utility to generate the TSO.cdf file.

Below is a skeleton table that implements the model data set with the following assumptions:

• Time offset doesn't vary from record to record.
• Processing duration doesn't vary from record to record.

• Time relationship doesn't vary from record to record.
• Key time and count rates vary from record to record.
• Fill data is used for missing data.

Variables KeyTime, SCLocation, CountRates, and Density represent the record key time,
spacecraft location, count rate at each of 12 energy steps, and density that is determined from 12

count rates, respectively. Global attributes are used to describe the creator of the CDF file
(TSO.cdf), to provide a brief description of this CDF file, and to further describe some variable
attributes (e.g. gTimeOffset, gProcessingDuration, etc.). All variables except KeyTime are not

independent or complete by themselves, and variable attributes are used to further describe these
variables. The following mapping describes what variable attributes are used for each of the
variables.

The variable attributes described above except for Description and Unit are also not complete by

themselves and need additional information. For example, there's no information about what the
units of ProcessingDuration is; there's no information about what the valid values are for the

38

TimeRelationShip attribute; and so on. The following global attributes are used to further describe

these variable attributes:

The logical CDF record, once the model is implemented, consists of the following fields: key time
(KeyTime), spacecraft location (SCLocation), count rates(CountRates), density (Density). Note
that the global and variable attributes are not part of the logical CDF record. With CDF, users can

store and retrieve the entire, or a portion, of the logical CDF record at a time.

39

40

NOTE:
 1. The "Record Variance" column specifies whether or not the variable's values change from
record to record.

41

 2. The "Dimension Variances" column specifies whether or not the values change along the
corresponding dimension.

 3. The "Record Variance" and "Dimension Variances" columns can have one of the following
values:

 T - True.
 F - False
 ' ' - Blank value. This means "not applicable."

B.2 HDF4 Implementation

We use two HDF building blocks to implement the TSO in HDF - Vgroups and Vdatas. Vgroups
are generic grouping elements allowing a user to associate related objects within an HDF file. As

Vgroups can contain other Vgroups, it is possible to build a hierarchical file. Vdatas are generic list
objects. Data is organized into "fields" within each Vdata. Each field is identified by a unique "field
name". The type of each field may be any of the basic types that HDF supports. Fields of different

types may exist within the same Vdata.

For this example, Vgroups are not very important. If there were data from several different

instruments within the data file, one could define a Vgroup for each instrument, for example. In any
case, within a Vgroup we can define a Vdata, and within the Vdata we can define the fields into
which the data is to be organized. So, there will be a correspondence between the Vdata fields and

the Words in the model data set.

We use HDF File Annotations and HDF Object Annotations and HDF Attributes to record

metadata within the HDF files. Any generic HDF data browser tool should be able to display all
annotations and attributes contained within any HDF file.

HDF annotations are basically containers into which one can dump short text descriptions. File

annotations are used to record global information about the dataset.
Object annotations can be attached to Vgroups or Vdatas or other objects within a HDF file. We
would attach an object annotation to the TSO Vdata that would describe the Vdata fields.

42

HDF attributes each have a name, a data type, a number of attribute values, and the attribute values

themselves. Any number of attributes can be assigned to either a Vdata or any field within a Vdata,
as long as they are named uniquely.

We would use HDF attributes to define units for the Vdata fields, offsets for the count-rates,
MAX/MIN limits, etc.

An easy way to define the Vdata fields is via a C data structure. Given this definition, a
straightforward series of calls to HDF library routines is needed to set up the Vdata, and to begin
reading/writing data records from/to a data file. This definition (including the comments) can

become a part of the data file if it is later incorporated into an Annotation of the Vdata (see below).

Note that the time definition above contains more fields than the model data mandated - that's just
to indicate that there are many ways of specifying Time, some useful for plotting routines, some for

readability, etc, etc. No matter which subset one decides upon, one is going to annoy somebody...

43

Note also that the S/C location and count-rates could easily be defined as arrays. However,
breaking them out into scalar quantities makes it easier to label each item with its own metadata
(see below).

In this implementation, all records will have the same length. Data gaps can either be filled with
records containing fill-data, or not...

Metadata (Annotations and Attributes)

Examples of file annotations that might be added to the HDF file are:
• Data description: A general description of the data, including processing dates and version

numbers. One would define how gappy data is handled here.

• Contact Info: Instrument team contact information.
• Release Notes: Provided by the instrument team.

The C data structure defined above (with comments) would be a minimal starting point for
An object annotation that would be attached to the TSO Vdata.

One use of HDF attributes would to define units for the Vdata fields. For instance, the "min" field
could have an attribute with name="UNITS", data-type= char, num_of_values=7, and
values="minutes". Another use of attributes would be to define the offsets for the count-rates. The

table below shows examples of attributes we could attach to each of the fields in the TSO Vdata:

44

Note that all the attributes above are implemented as character strings, which limits their usefulness
in computations. An alternative might be to implement the offsets as integers, for example.

45

However, then one must find another way to communicate the units of the offsets, possibly as

attributes attached to the Vdata (i.e. one level up in the hierarchy). Such schemes require a smart
API to make proper use of them...

Some fields may need more attributes (eg. MIN and MAX limits for plotting, or count rate energy
steps). That's OK, HDF allows for different fields to have different numbers of attributes.

B.3 IDFS Implementation

There are various ways in which the model data set can be stored under IDFS, which is probably a

statement that can be made by other formats as well. Under IDFS, you store the RAW data and the
procedures to convert that raw data into geophysical quantities. That is not to say that computed
data cannot be stored under IDFS; it is simply that the strength of IDFS is in the ability to modify

the procedure for data conversion into physical units without the need to re-process all data sets
since the raw data is what is stored.

With IDFS, data is grouped into virtual (or logical) instruments. A virtual instrument is a group of
sensors that are linked together by commonality; therefore, it makes sense to treat the sensors
together. A virtual instrument can be classified as either a scalar instrument or a vector instrument.

A scalar instrument returns singular data quantities that are dependent only upon time and position.
An IDFS vector instrument returns one-dimensional data quantities that have a functional
dependence upon a single variable called the scan variable. The length of this 1-D vector is virtual

instrument dependent.

There appears to be three different types of data contained in the model data set: (1) the s/c location

(which are three scalar values), (2) the count rates consisting of 12 elements, and (3) density (a
scalar processed value). It is assumed that the spacecraft location and count rates are measurements
with discrete values. These data values should be stored in their raw form and the IDFS should

contain the necessary descriptions for converting the stored data numbers into geophysical
numbers. If the assumption is not correct and these are all computed quantities, they can be stored
as is within IDFS as data.

One possible scheme would be to subdivide the data into 3 virtual instruments, which are referred
to as (1) POSITION, (2) COUNT_RATE, and (3) DENSITY. In the IDFS paradigm, each data set
is written into two types of files: the header file (H) and the data file (D). File names link the

proper header and data files together. There is also a VIDF file and a PIDF file per virtual

46

instrument, as described later. Using the prescription as laid out, one year of data at one day per

file would result in the following maximum number of files:

• IDFS data files = 3 virtual instruments * 365 days in year = 1095

• IDFS header files = 3 virtual instruments * 365 days in year = 1095
• IDFS VIDF files = 3 virtual instruments = 3
• IDFS PIDF files = 3 virtual instruments = 3

Total = 1095 + 1095 + 3 + 3 = 2196 files

An alternative approach would be to create IDFS files that are one year in duration, thereby

resulting in the following maximum number of files:

• IDFS data files = 3 virtual instruments = 3

• IDFS header files = 3 virtual instruments = 3
• IDFS VIDF files = 3 virtual instruments = 3
• IDFS PIDF files = 3 virtual instruments = 3

Total = 3 + 3 + 3 + 3 = 12 files

The latter approach results in a fewer number of files. This is beneficial when data is being

promoted from an IDFS archival site; that is, there would be a smaller number of files to be
transferred to the local machine that is requesting the IDFS data. In addition, there would be fewer
entries for the IDFS database. This results in a smaller number of comparisons being made when

the database is being searched for a particular time period.

The Virtual Instrument Description File (VIDF) is a complete description of the virtual instrument.

The VIDF file is meant to be easily updated and to contain all of the data that may be periodically
updated due to either refinement in the instrument calibration or due to the degradation within the
instrument. There must be at least one VIDF file defined for each IDFS virtual instrument. If data

within the VIDF changes with time, for example calibration coefficients, additional VIDF files can
be defined. The VIDF file provides a general description of the measurements being stored in
IDFS format, and contains the data reconstruction parameters that are needed in order to transform

the raw data into physical units. In addition, the VIDF file provides information by which data
from the data file can be extracted, such as:

1. the field DATA_LEN holds the size of the data records contained in the data file

2. the field MAX_NSS defines the maximum number of sensor sets defined in each data record
3. the field TDW_LEN defines the word length (bits) for each sensor contained within each data

record

47

4. the field FILL contains the designated fill data value used in the IDFS data records to indicate

missing or fill data

The Plot Interface Definition File (PIDF) is an optional file under the IDFS format. The word

optional in this context means that it is not necessary in the use of any of the IDFS data access
software; that is, data in IDFS format can be located through the database, accessed and converted
to units without the PIDF file. If, however, you plan to use any IDFS based data display or analysis

software that has been developed by Southwest Research Institute (SwRI), the PIDF file is
required.

The PIDF is best described as an interface file between the IDFS VIDF definitions and a general
user interface to a display or analysis program, providing a large number of display attributes. The
PIDF file is an ASCII file that describes how to display the data in a meaningful way. The PIDF

file defines the units that are available for each sensor including the correct VIDF tables to apply,
how they are applied and the scaling limits (min/max) for each set of units.

The header files contain data which, for the most part, is slowly varying in time and need not be
repeated every data record. Each IDFS data record points to a header record that describes the state
of the instrument at that particular point in time. The format of the header record is shown below in

the form of a C data structure, utilizing user-defined data types to address the issue of porting the
source code to multiple platforms:

48

D_qual is an index into an array of data quality flags defined in the VIDF file. At a minimum,
each VIDF file should define 2 levels of data quality, good and bad data. The fields data_accum,

time_units, and data_lat, taken together, define the total time between successive accumulations.
Note that for many scalar data sets, the accumulation time (data_accum) is set to zero to indicate
that the accumulation is instantaneous. In these cases, the data_lat field is used to give the time

between successive measurements. For those virtual instruments that are classified as vector
instruments, every sample within the sweep has a finite acquisition time, regardless of how small.
It is important to keep the duration of the window during which the acquisition took place;

therefore, data_accum should not be set to zero. In addition, the swp_reset field is needed to
define the dead time that is needed to reset themselves between successive sweeps. For many
particle instruments, this is equivalent to the flyback time.

The vast majority of all of the telemetered data is stored within the data file, which contains the
most rapidly varying data. The data records contain the base time tag for the data and raw,

unprocessed binary data. Unlike the header record, the data record does not vary in size. The size
is specified in the VIDF file. The format of the data record is shown below in the form of a C data
structure, utilizing user-defined data types to address the issue of porting the source code to

multiple platforms:

Note that the data_array is generically assigned the data type SDDAS_UCHAR, which is an

unsigned character (8 bits). The data may be stored within the field with a base length of 8, 16 or

49

32 bits. The storage boundary used for individual data within a particular data file is determined

from the VIDF file and is used by the IDFS data access software to correctly unpack the data.

Data storage in the IDFS data record is organized along the concept of sensor (primary) data,

calibration (secondary) data and sensor sets. Sensor data is the basic, primary measurement and is
placed in the data_array field first. Calibration data is ancillary data that is necessary to interpret
the primary data (e.g., automatic gain correction values). Not all virtual instruments have

calibration data defined. Calibration data is placed in the data_array field after all sensor data has
been written. These two data matrices (sensor and calibration) taken collectively are what is
referred to as an IDFS sensor set. A different header record can describe each sensor set since there

is one hdr_off value defined per sensor set.

For the TSO model data set, each data record represents one minute of data. Since the TSO model

data set contains a small amount of data, under IDFS, the data could be written in hour records, or
60 sensor sets per record. Or better yet, the entire day of data could be packed into one record of
3600 sensor sets.

How gaps are incorporated into the IDFS data files depends upon how the data is structured in the
data records. If a single sensor set is written per data record, gaps are handled by simply omitting

the missing data records. The timetags for the data that are written will reflect the gap in time. If
multiple sensor sets are written per data record, a fill value to be inserted as a place holder for bad
or missing values should be defined in the VIDF file. This fill value will need to be inserted into

the appropriate part of the data.

For IDFS, the data types have the following meaning:

For word 1, the time tag in the format, YYYYDDDtHHMM, the value would be broken down into
3 values: (1) 4 digit year value, (2) julian day of year value (1 to 365 (366)), (3) time of day in
millisecond resolution. The first two quantities would be placed in the header record associated

with each of the 3 virtual instruments. The third value would be placed in the data record

50

associated with each of the 3 virtual instruments and would be computed using the following

algorithm:

 (HH * 3600 + MM * 60) * 1000

since the base time tag in the data record (dr_time) is expressed in milliseconds.

Word 2, s/c location, would only be placed into the data record for the POSITION virtual
instrument. The location values are assumed to be instantaneous values determined at the time tag,
with all three components determined simultaneously. The timing information stored in the header

record for these data values would describe a data accumulation value of zero and a data latency
value of 1 minute or 60 seconds (this is the time between successive data samples). The VIDF file
would describe 3 scalar sensors taken in parallel, each being a floating-point real number. Since

there isn't that much s/c location data, the data could be repackaged into one hour or one day data
records instead of one-minute data records. It is always assumed that the time of day value written
in the data file is the start of the accumulation time of the first element of data in a data record.

An example header record for the POSITION virtual instrument would be:

Note that when the header record is written, the value for hdr_len should be computed using a
sizeof function, in which case, the value may be rounded to the nearest word size. In the example

above, the total size in bytes (hdr_len) tallies in at 39.

An example data record that represents one minute of data per record for the POSITION virtual

instrument would be:

51

An example data record that represents one hour of data per record for the POSITION virtual
instrument would be:

Note that the hdr_off values in the data record shown above are all the same. At a minimum, this

implies that all samples were taken on the same year / day of year combination. If a day boundary
is crossed, the hdr_off values should be modified to point to the header record that contains the
correct year / day of year values. Since the data records are being bundled on an hour boundary,

this would not happen unless time started somewhere within the hour instead of at the beginning of
the hour.

Words 3 - 14, count rates, would only be placed into the data record for the COUNT_RATE virtual
instrument. For this data set, an assumption that all twelve measurements are a function of a single
parameter, that being energy, is made. This assumption is based on the wording "1st of 12 energy

steps". Based on this assumption, the data would describe a single sensor coming from an IDFS
"vector" instrument. A vector instrument is an instrument whose sensors, or data products,
represent multivalue (1-D) data sets that have known functional dependencies other than time or

position, i.e., a particle spectrometer which returns counts as a function of energy. The length of
this 1-D array would be defined as 12 for this virtual instrument. What are also needed for the
description of this data set are what energies these count rates depend on. In order to provide this

information, twelve index values, labeled 0 through 11, will be placed in the header record within
the header file. These twelve indexes will provide the ability to link each count rate to the energy
that the count rate is dependent upon. In the VIDF file, the data will be described as 4-byte integers
and there are 12 elements in a vector scan. Note that if you wanted you could just store the count

rather than the rate and let the IDFS compute the rate. If this were true, in the VIDF file, a table
could be specified to generate the energy value given the sequence number. It is assumed that the

52

time of day value written in the data file is the start of the accumulation time of the first element of

data in a data record.

An example header record for the COUNT_RATE virtual instrument would be:

This data has an accumulation period, which is not known, and a data latency, which is not known,
only that the sum of the accumulation and latency is 5 sec. In the example header record shown
above, the 5 seconds is split between the data accumulation value, which is specified in seconds,

and the data latency value, which is specified in microseconds. If all 12 count rate values are not
returned, a new header could be created and the header record would specify the actual number of
values returned and the indexes (energy step) which correspond to the values that were returned.

For example, if 6 values were returned, that being every other value, six indexes would be specified
{0, 2, 4, 6, 8, 10}.

If the 12 values are not functions of a single parameter, but rather 12 distinct measurements, then
the data would describe twelve IDFS sensors coming from an IDFS "scalar" instrument. A scalar
instrument is an instrument whose sensors, or data products, represent a set of singular data values

that are dependent only upon time and position, e.g. a housekeeping temperature monitor. The
VIDF would describe twelve scalars taken in parallel, and the time offsets (0, 5, ... 55) would be
placed in the VIDF file and utilized when the time tag for each individual sensor is computed.

An example data record that represents one minute of data per record for the COUNT_RATE
virtual instrument would be:

53

An example data record that represents one hour of data per record for the COUNT_RATE virtual
instrument would be:

Word 15, density, would only be placed into the data record for the DENSITY virtual instrument.
The DENSITY header file has one sensor defined with a data accumulation value of 55 seconds

and a data latency value of zero seconds. The VIDF file defines one sensor that is a real value that
is 4-bytes long. Since the density is highly processed data, this is probably the best way to store
this data. The 4-byte values are probably not easily converted into something that can pack better.

When generating the density data time tag, the time tag is the start of the data accumulation time.
Writing only one data set per data record is a poor way to save the density data. First, assume that
if there is missing count rate data, then there is no density data. Since there is one value per data

record, you could just not write that record, so there will be a gap that could be handled by IDFS.
However, the recommendation for this data set would be to write the density in hour records, or 60
values per data record. A fill value could be defined which could be put in place of bad or missing
values. Another alternative is to pack the entire day of data into one record of 3600 elements.

An example header record for the DENSITY virtual instrument would be:

54

An example data record that represents one minute of data per record for the DENSITY virtual
instrument would be:

An example data record that represents one hour of data per record for the DENSITY virtual

instrument would be:

B.4 FITS Implementation

The FITS data format is defined solely in terms of the data structure as stored on disk or tape
media. No standard FITS API exists although the format is nearly universally supported in

astronomy analysis software.

A FITS file consists of one or more Header-Data Units (HDUS). Descriptive information about the

data is placed in the header which completely defines the structure of the data that follows. The
header may optionally contain information on the semantics of the data, i.e., the unit, definitions of
the axes and so forth.

55

FITS addresses the relationships between the numbers in the FITS files and the physical units in

several ways. For some keywords values, e.g., coordinates, the units are defined in the FITS
standard. For other keywords the units are often given using comments. The relationship between
data elements and phyical units is more completely detailed using the FITS WCS conventions

which have now been submitted for formal ratification by appropriate national committees. For
scalar elements of tables, there are explicit scale, offset and unit keywords. For non-scalars --
either in tables or images -- FITS allows the user to associate each dimension (viewed as pixels) of

the object with a physical axis where appropriate keywords describe a linear transformation from
the pixel offsets to physical units.

Frequently a scalar value is treated as being a vector of length 1, or a non-scalar is described as
having higher dimensionality than is required with the extra dimensions all have length 1. These
'extra' dimensions allow the user to specify additional information about the physical characteristics

of the data. E.g., an two dimensional image of the sky may be described as being NxNx1 rather
than just NxN. The third dimension can be the energy dimension and allows the FITS writer to
describe the energy range of the observation. Similarly a rates array may be an Nx1 array rather

than just N, with the additional axis again describing the energy. This could be taken even further.
A rate array might be described as Nx1x1x1 where the keywords describing the first two additional
axes give the position of the observation and then the energy.

Some of the standards for specification of this metadata have been standardized in protocols
approved by the International Astronomical Union. Others are specified in more localized

protocols. In the example below we specify some metadata using protocols of the High Energy
Astronomy Science Archive Research Center (HEASARC). While these protocols have been
widely adopted in some areas of astronomy, they are not universally accepted.

For the reference data set, an implementation as a FITS table, or a set of tables is most natural. We
have implemented the reference data set using the same file structure as in the reference model,

with each day kept as a separate file. It would be perfectly feasible to organize all of the data in a
single file, or to have multiple HDU's with different days within a single FITS file.

To realize a FITS file with these data we would need to create a file with two HDU's. The first is a
dummy HDU where the header can contain descriptive information about the file, but will contain
no actual data. Table data is not permitted in the first HDU. The header for an HDU comprises a
series of 80 byte records terminated by an END record. The dummy HDU header might look like:

56

The meaning of each line is given after the '/' which begins the comment field of a FITS header
line.

Following the primary HDU (with some padding required by rules originally designed to enable
FITS to work well with tape media) the header for the second HDU is written. This consists of a

series of required keywords which indicate the type and size of the table, and then definitions of
each of the columns. Only the actual data format of the column is required but much other
information about the column can be given. An example header which describes the reference

data set is given below. Comments describe each line in the header.

57

After a small amount of padding the data would be written in big-endian, IEEE standard format.

Note the extensive use of the nTYPm, nCRVLm, nCRPXm and nCDLTm keywords. These provide
quite a flexible approach to describing where a 'pixel' of data exists in FITS space. The first

number refers to the column being described. Each column can have a n-dimensional vector as a
value. These keywords indicate what the axes of these vectors are and how the user can find the

58

value along these axes appropriate for a given pixel. The third and fourth columns both describe

pixels in space and thus we give them a time axis. Note that we can treat a scalar as a single
element vector along some axis. We do this to describe the time interval associated with the fourth
column. We also do it to describe the range associated with the rates in column 3.

There is considerable work in progress in standardizing these associations in the FITS community.
Time and projected positions are described using agreed and relatively sophisticated protocols.

Work is still underway in describing energy-based (e.g, frequency, wavelength) columns.

B.5 PDS Labels Implementation

Overview

The PDS label architecture is oriented to providing an archival description of a data file, rather than
to supporting display or manipulation of the contents. The PDS SERIES object which is used in
this example is a slight specialization of the PDS TABLE object, which is just a flat file of ASCII

or binary values (depending on the value of the INTERCHANGE_FORMAT keyword).

TSO implementation.

Offsets. These are normally specified in descriptive text. The sampling parameter keywords can
also be used to indicate a repeating group of regular observations as illustrated in the example.

File organization. The organization of data into physical files in the PDS architecture is done using
a set of PDS guidelines based on size and time. In this case each physical file is specified to be one

day’s worth of data records or 1440 records. There would then be conventions for directory names
and file names that would provide convenient access to a file containing a certain period of time.

Units. Units can be specified for a column object using the UNIT keyword. When units need to
be associated with a sampling parameter, the SAMPLING_PARAMETER_UNIT keyword is used.

Time associations. In general, time associations are specified within the description of a field.
There are duration keywords which can be used to indicate some time associations, like the
frame_duration which indicates an instantaneous measurement in the example.

Drop outs. There are no conventions for handling drop outs.

59

Example Description

The metadata values at the beginning of the file provide the physical file attributes. The next set of
keywords identify the source of the data and provide identification information for the data set and

this particular data instance (all PDS data objects are grouped into data sets). All TIME fields in
PDS labels use the ISO standard time format and are assumed to be in UTC. The ^TIME-SERIES
label provides a pointer to the data file containing the time series. The OBJECT block describes

the format of the fields in the time series, with individual column objects for each field. Note that
the column objects provide explicit information about the storage format of the binary values in the
data object (IEEE_REAL and MSB_INTEGER) which may be needed to interpret the data values

in the future. Note that there is no vector data type for column values, so the position vector has to
be handled as three separate fields. The count rate is handled as a column with 12 items and the
items have a sampling parameter of 5 seconds each.

60

61

Appendix C: Time-series API Detail

This section describes possible Application Programming Interfaces (APIs) that can be used to

accommodate the Time Series Object (TSO) requirements defined in section 2. It has been
estimated that for each of the formats discussed in section 3, the existing software support could
likely be the basis for the types of services described below.

An Object Oriented (OO) approach is employed in designing the APIs with the following
requirements and assumptions:

 - Support simultaneous access to multiple TSOs.
 - Data is organized and stored as described in Figure 1 (Time-Series Object Conceptual View)

of section 2 , except the actual data values are viewed as trailing the time relationships for each
record field.

 - The structure of each TSO record is consistent

Sections C.1 and C.2 provide an introduction to the detailed API definitions specified in C.3 and
C.4. A fully consistent set of API definitions has not been attempted, but there is enough to give a

good idea of the approach.

Changes to be completed in future versions would include:

♦ In Section 2, we indicate that record sizes can vary. However some of the current API calls
assume the record size is constant, i.e. each record (logically) contains an instance for every
data field. If record size varied, then the data fields available in each record would vary. We

may choose to provide an API either for vary size records or fixed sized records or perhaps
even a API version for each case. The API version will affect what parameters are needed on
inputs for many of the TSOField calls. We will likely need to update parameters for some of

the calls whichever version of the API is provided.
♦ If data fields can vary within records or if the order of the data fields within a record are

unknown, then additional data field identification and/or data type information will be needed

in a number of the TSO field calls.

C.1 Application Programming Interfaces (APIs)

Each API returns a status code of Integer*4 to indicate whether the API is successfully completed.

If the API is not successfully completed, it should return a negative number. Otherwise it should

62

return the status code value of greater than or equal to 0 to indicate the successful completion of the

API. Status codes and their explanation texts are not documented in this document since they can
vary from implementation to implementation. The following describes the meaning for each of the
data types used in the APIs.

Data Type Description

String A character string that has one or more characters. The

size of a string is indicated by adding a colon after the
word‘String’ followed by the string size. For example,
String:20 represents a string that is 20 characters long.

Integer*4 4-byte signed integer
Real*4 4-byte floating point number
Void Data type used to represent any of the data types described

above. This data type is used to send or receive data
to/from an API and is equivalent to ‘void’ in C,
‘equivalence’ in Fortran, and ‘Object” in Java.

There are two categories of APIs: low level APIs and high level APIs. Low level APIs provide a
basic set of functions that allow users to create and manipulate TSOs, TSO records, and TSO

record fields. High level APIs allow users to perform more sophisticated functions such as “get the
records whose key time is between time A and time B”, “get the time range (begin and end time)
for the given TSO”, “get the values for fields ’x’ and ‘y’ for the key time between time A and time

B”, and etc. High level APIs make use of low level APIs as building blocks, often in combination
with some programming.

Naming Conventions
• Calls are mixed case with the first letter of each word capitalized all other letters are lower

case. (E.g., GetKeyTime, GetTSORec) (Note TSO is an abbreviation and is always

capitalized.)
• Calling Parameters are mixed case, the first letter of each word except the first is

capitalized, all other letters are lower case. (E.g., name, recNum, TSOId) (Note TSO is an

abbreviation and is always capitalized.)
• The following abbreviations are used consistently throughout in names of Calls and Calling

Parameters. These abbreviations are capitalized according to naming convention rules,
except that TSO is always in all upper case.

• Id - Identifier
• Num - Number
• Processing - Proc

63

• Rec - Record

• TSO - Time Series Object
• Calls named as CreateXxx will have a matching DeleteXxx call.
• Calls named as SetXxx will have a matching GetXxx call.

Low Level APIs
TSO Handling APIs

• CreateTSO (String:30 name, Integer*4 TSOId)
• DeleteTSO (Integer*4 TSOId)
• AskTSOId (String:30 name, Integer*4 TSOId)

• AskTSOName (Integer*4 TSOId, String:30 name)

TSO Record Handling APIs

• CreateTSORec (Integer*4 TSOId, Integer*4 recNum)
• DeleteTSORec (Integer*4 TSOId, Integer*4 recNum)

• AskTSORecSize (Integer*4 TSOId, Integer*4 recNum, Integer*4 recSize)
• SetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)
• GetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)

• SetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)
• GetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)

TSO Record Field Handling APIs

• CreateTSOField (Integer*4 TSOId, Integer*4 recNum, String:30 name,

Integer*4 dataType, Integer*4 numDims, Integer*4 dimSizes[], Integer*4 fieldId)
• DeleteTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId)
• SetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldID,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)
• GetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

• SetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldID,
Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

• GetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset, Real*4 procDuration, String:18 timeRelationship, Void data)

64

• SetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)
• GetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)

• SetProcessingDuration Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
Real*4 procDuration)

• GetProcessingDuration (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

Real*4 procDuration)
• SetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

String:18 timeRelationship)

• GetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
String:18 timeRelationship)

• SetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)

• GetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)
• AskTSOFieldId (String:30 name, Integer*4 fieldId)
• AskTSOFieldName (Integer*4 fieldId, String:30 name)

• AskTSOFieldType (Integer*4 fieldId, Integer*4 dataType, Integer*4 numDims,
Integer*4 dimSizes[])

High Level APIs

TSO Record Handling APIs

• ExtractTSORecs (Integer*4 TSOId, String:22 startTime,

String:22 endTime,String:variable TSORecs[])
• AskTotalTSORecs (Integer*4 TSOId, Integer*4 numRecs)
• AskNumTSORecs (Integer*4 TSOId, String:22 startTime, String:22 endTime,

Integer*4 numRecs)

TSO Record Field Handling APIs

• AskTSOFieldNames (Integer*4 TSOId, String:30 names[])
• AskTSOFieldIds (Integer*4 TSOId, Integer*4 fieldIds[])
• AskNumTSOFields (Integer*4 TSOId, Integer*4 numFields)

• AskNumDataValues (Integer*4 TSOId, String:22 startTime, String:22 endTime,
String:30 fieldNames[], Integer*4 numDataValues)

65

• AskTSOFieldsData (Integer*4 TSOId, String:22 startTime,String:22 endTime,

String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])
• AskTSOFieldsData1 (Integer*4 TSOId, String:22 startTime,String:22 endTime,

String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])

• AskStartKeyTime (Integer*4 TSOId, String:22 startTime)
• AskEndKeyTime (Integer*4 TSOId, String:22 endTime)

C.2 Translation of Binary Data to String

A TSO record logically consists of a key time followed by a sequence of heterogeneous fields. If

the user requests an entire TSO record, the requested record is returned in a contiguous block of
octets. For convenience this API includes calls that return the data as its logical Data Type.
However since the data type of one field can be different from other fields, the API also includes

calls where the system translates individual field’s data into a common format (i.e. string) before
returning the requested data. The following mapping guideline should be used for translating a
binary data to a string for consistent implementation of the TSO:

Data Type Translated String (left-justified)

1-byte, unsigned integer 3 bytes

1-byte, signed integer 4 bytes

2-byte, unsigned integer 5 bytes

2-byte, signed integer 6 bytes

4-byte, unsigned integer 10 bytes

4-byte, signed integer 11 bytes

4-byte, signed float (IEEE 754) 15 bytes

8-byte, signed float (IEEE 754) 25 bytes

As an example, if a field has two Integer*2 (signed) data values, say 1234 and 1244, then the
returned value would be the 10 character string ‘1234 1244 '.

Throughout this API, when a key time is expressed as a string, it will be a 22 character string in the
YYYYMMDDTHHMMSS.ssssss format where

YYYY = year,

MM = month,
DD = day,

66

T = the character"T" (separates date and time portions

HH = hour,
MM = minute,
SS = second

. = decimal point separating the integer and fractional portion of the seconds
(may be replaced by a space character if the entire fractional portion of a second is
replaced)

ssssss = fractional portion of second
(any number of the trailing digits may be replaced an equivalent number of space
characters)

When TSO Record Fields are input or output in String format, they will use the format shown

below.

Field Size (octets) Comments

Time offset 15
[base is
Real*4]

In seconds.
Left-justified.
Blank padded to correct length.

Processing duration 15
[base is
Real*4]

In seconds.
Left-justified.
Blank padded to correct length.

Time relationship 18 Contains one of the following
values:
 ‘start of duration ’

 ‘middle of duration’
 ‘end of duration ’

Note that the returned value is
padded with blanks if the length
of the string is shorter than 18.

Data Variable Size depends on how the field
data was declared and stored.

67

When TSO Records are input or output in String format, they will use the format shown below.

Field Size (octets) Comments

Key time 22 The key time

Field x
(Repeat once for each field)

Variable
48+data

Use field data format shown
above for each field

C.3 Low Level APIs

Low level APIs provide a basic set of functions that allow users to create and manipulate TSOs,
TSO records, and TSO record fields.

C.3.1 TSO Handling APIs

CreateTSO (String:30 name, Integer*4 TSOId)

It creates a TSO.

PARAMETERS:

name String:30 In – the name of the TSO to be created
TSOId Integer*4 Out – the identifier of the TSO just created

RETURNS:

status Integer*4 Status code.

DeleteTSO (Integer*4 TSOId)

68

It deletes a TSO. All information associated with this TSO will be deleted (e.g. all records,

including field data, key time, processing duration and time relationship, etc.).

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO to be deleted

RETURNS:

status Integer*4 Status code.

AskTSOId (String:30 name, Integer*4 TSOId)

It returns the TSO ID for the TSO with the given name.

PARAMETERS:

name String:30 In – the name of the TSO of interest.
TSOId Integer*4 Out – the identifier of the TSO of interest

RETURNS:

status Integer*4 Status code.

69

AskTSOName (Integer*4 TSOId, String:30 name)

It returns the name for the TSO with the given TSO identifier.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest

name String:30 Out – the name of the TSO of interest.

RETURNS:

status Integer*4 Status code.

C.3.2 TSO Record Handling APIs

Note: The current API makes use of record numbers where we assume that records will be created
in appropriate order and key times are monotonically added. Another option we could investigate

in future issues would be to create records with given key and return simply record identifiers
instead of record numbers. The API could then be responsible for maintaining the correct order.
Note: We may want to provide an API call to adjust key time and offset of all fields within the

record at the time.

CreateTSORec (Integer*4 TSOId, Integer*4 recNum)

It creates a TSO record.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest

recNum Integer*4 Out – the number of the record created. One
(1) represents the first record

RETURNS:

status Integer*4 Status code.

70

DeleteTSORec (Integer*4 TSOId, Integer*4 recNum)

It deletes a TSO record. All information associated with this TSO record will be deleted (e.g.
all field data, key times, processing durations and time relationships, etc.).

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record

RETURNS:

status Integer*4 Status code.

AskTSORecSize (Integer*4 TSOId, Integer*4 recNum, Integer*4 recSize)

Note: If we provide API calls for both varying and invariant records, we will need to update
these parameters. If record sizes can vary, a record number is needed (and a call to get

maximum record size is needed). If record sizes don't vary, then any record number should
provide the same result, so record number is not needed.

It returns the TSO record size of the given TSO. The record size returned is the size in octets
of the record returned by GetTSORec.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record
recSize Integer*4 Out – the record size for the given TSO

record

71

RETURNS:

status Integer*4 Status code.

SetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)

It sets the key time for the given record number.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record

keyTime String:22 In – the key time

RETURNS:

status Integer*4 Status code.

GetKeyTime (Integer*4 TSOId, Integer*4 recNum, String:22 keyTime)

It returns the key time for the given record number.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record
keyTime String:22 Out – the key time for the given record

number

72

RETURNS:

status Integer*4 Status code.

SetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)

It sets a TSO record for the given TSO ID and TSO record number. The record data is input
in a contiguous block of octets, and it’s the API’s responsibility to map the input octets to the

appropriate data types. The TSO record consists of a ‘key time’ followed by a sequence of
field information (data, time offset, processing duration, time relationship).

Field information is repeated n times where n is the number of fields in a TSO record. For
example, if there are two fields in a record, then the returned record would contain the
following information:

Key time, Field 1 time offset, Field 1 processing duration, Field 1 time relationship, Field 1
data, Field 2 time offset, Field 2 processing duration, Field 2 time relationship, Field 2 data

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record

TSORec String:variable In – TSO record for the given TSO ID and
the TSO record number.

RETURNS:

status Integer*4 Status code.

GetTSORec (Integer*4 TSOId, Integer*4 recNum, String:variable TSORec)

It returns a TSO record for the given TSO ID and TSO record number. The requested record
is returned in a contiguous block of octets, and it’s user’s responsibility to map the returned

73

octets into appropriate data types. The TSO record consists of a ‘key time’ followed by a

sequence of field information (data, time offset, processing duration, time relationship.)

Field information is repeated n times where n is the number of fields in a TSO record. For

example, if there are two fields in a record, then the returned record would contain the
following information:

Key time, Field 1 time offset, Field 1 processing duration, Field 1 time relationship, Field 1
data, Field 2 time offset, Field 2 processing duration, Field 2 time relationship, Field 2 data

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

TSORec String:variable Out – TSO record for the given TSO ID and

the TSO record number.

RETURNS:

status Integer*4 Status code.

C.3.3 TSO Record Field Handling APIs

Note: This AIP makes it be possible to set time offset, processing duration, and time relationship
separately. We may choose in future versions to require that all be reset if any one of them is reset
since they are so closely linked.

CreateTSOField (Integer*4 TSOId, Integer*4 recNum, String:30 name, Integer*4 dataType,

Integer*4 numDims, Integer*4 dimSizes[], Integer*4 fieldId)

It creates a TSO record field and returns a field ID.

PARAMETERS:

74

TSOId Integer*4 In – identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

name String:30 In - the name of the TSO record field to be

created
dataType Integer*4 In – data type of the field to be created

Allowed values: TBD

numDims Integer*4 In – number of array dimensions.

Zero (0) represents that the data for this
field is a scalar value. The value of 1
represents that the data is stored in a 1-

dimenional array. The value of 2 represents
that the data is stored in a 2-dimensional
array, and so on.

dimSizes Integer*4 [] In – array dimension sizes.

The value of the first element of this array

should be zero (0) if the data for this field is
a scalar value. If the data is stored in a 10x3
2-dimensional array, then the values of the

first and second element should be 10 and 3.

fieldId Integer*4 Out – the identifier of the field just created.

RETURNS:

status Integer*4 Status code.

75

DeleteTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId)

It deletes a TSO record field. All information associated with this TSO field will be deleted
(e.g. all time offsets, processing durations and time relationships, etc.).

PARAMETERS:

TSOId Integer*4 In – identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record.
fieldId Integer*4 In – the identifier of the field to be deleted.

RETURNS:

status Integer*4 Status code.

SetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldID, Real*4 timeOffset,
Real*4 procDuration, String:18 timeRelationship, Void data)

It sets the field information (data, time offset, process duration, time relationship) in the given
TSO record.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldID Integer*4 In - the identifier of the field of interest

timeOffset Real*4 In – time offset from the key time
procDuration Real*4 In – processing duration
timeRelationship String:18 In – time relationship of this field to the key

time. It should be one of the following

values:
 ‘start of duration’
 ‘middle of duration’

76

 ‘end of duration’

data Void In – the data values to be added to this field.
The data can be a scalar, 1-dimensional

array, or multi-dimensional array of any
data type.

RETURNS:

status Integer*4 Status code.

GetTSOField (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Real*4 timeOffset,
Real*4 procDuration, String:18 timeRelationship, Void data)

It returns the field information for the given field ID and record number. Field data, time
offset, processing duration, and time relationship are returned.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest

timeOffset Real*4 Out – time offset from the key time.
procDuration Real*4 Out - processing duration.
timeRelationship String:18 Out – time relationship of this field to the

key time that is one of the following values:
 ‘start of duration ’
 ‘middle of duration’

 ‘end of duration ’

data Void Out – data values for the given field id.

RETURNS:

status Integer*4 Status code.

77

SetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, String:variable data)

It sets the field information (time offset, processing duration, time relationship, and data) for
the given field ID and record number. The field information is passed as a contiguous block

of octets as described in the TSO field structure above.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – thenumber of the record of interest.

One (1) represents the first record
fieldId Integer*4 In - the identifier of the field of interest
data String:variable In – the field information

RETURNS:

status Integer*4 Status code.

GetTSOFieldData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, String:variable data)

It returns the field information (time offset, processing duration, time relationship, and data)
for the given field ID and record number. The field information is passed as a contiguous
block of octets as described in the TSO field structure above.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest
data String:variable Out – the requested field information

78

RETURNS:

status Integer*4 Status code.

SetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Real*4 timeOffset)

It sets the time offset for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest
timeOffset Real*4 In – time offset from the key time

RETURNS:

status Integer*4 Status code.

GetTimeOffset (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Real*4 timeOffset)

It returns the time offset for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record
fieldId Integer*4 In - the identifier of the field of interest

timeOffset Real*4 Out – time offset from the key time

RETURNS:

79

status Integer*4 Status code.

SetProcessingDuration (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
Real*4 procDuration)

It sets the processing duration for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest

procDuration Real*4 In - processing duration

RETURNS:

status Integer*4 Status code.

GetProcessingDuration (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
Real*4 procDuration)

It returns the processing duration for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest

procDuration Real*4 Out - processing duration

RETURNS:

80

status Integer*4 Status code.

SetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,
String:18 timeRelationship)

It sets the time relationship for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest

timeRelationship String:18 In – time relationship of this field to the key
time that has one of the following values:
 ‘start of duration ’

 ‘middle of duration’
 ‘end of duration ’

Note that the returned value should be
padded with blanks if the length of the
string is shorter than 18.

RETURNS:

status Integer*4 Status code.

GetTimeRelationship (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId,

String:18 timeRelationship)

It returns the time relationship of the key time for the given TSO, record number, and field.

81

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record
fieldId Integer*4 In – the identifier of the field of interest
timeRelationship String:18 Out – time relationship of this field to the

key time that has one of the following
values:
 ‘start of duration ’

 ‘middle of duration’
 ‘end of duration ’

Note that the returned value is padded with
blanks if the length of the string is shorter
than 18.

RETURNS:

status Integer*4 Status code.

82

SetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)

It sets the actual data field for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

recNum Integer*4 In – the number of the record of interest.
One (1) represents the first record

fieldId Integer*4 In - the identifier of the field of interest

data Void In – the data values to be added to this field.
The data can be a scalar, 1-dimensional
array, or multi-dimensional array of any

data type.

RETURNS:

status Integer*4 Status code.

GetData (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldId, Void data)

It returns the actual data field for the given TSO, record number, and field.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
recNum Integer*4 In – the number of the record of interest.

One (1) represents the first record
fieldId Integer*4 In - the identifier of the field of interest
data Void Out – the data values from this field. The

data can be a scalar, 1-dimensional array, or
multi-dimensional array of any data type.

RETURNS:

status Integer*4 Status code.

83

Note: fieldId is considered to be universally unique in this version. Future version may reduce the

scope of fieldId to be within a TSO. If that change is made a TSOId will need to be added to these
calls.

AskTSOFieldId (String:30 name, Integer*4 fieldId)

It returns the field ID for the given TSO field name.

PARAMETERS:

name String:30 In – the TSO field name to be searched
fieldId Integer*4 Out – the identifier of the field of interest

RETURNS:

status Integer*4 Status code.

[Note: This assumes fieldIds universally unique , i.e. TSOId and the record number are not
needed.]

AskTSOFieldName (Integer*4 fieldId, String:30 name)

It returns the field name for the given TSO ID.

PARAMETERS:

fieldId Integer*4 In – the identifier of the field of interest
name String:30 Out – the TSO field name of interest

RETURNS:

status Integer*4 Status code.

84

[Note: This assumes fieldIds universally unique , i.e. TSOId and the record number are not

needed.]

AskTSOFieldType (Integer*4 fieldId, Integer*4 dataType, Integer*4 numDims,
Integer*4 dimSizes[])

It returns the data type and size for the given field ID.

PARAMETERS:

fieldID Integer*4 In - the identifier of the field of interest
dataType Integer*4 Out – data type

numDims Integer*4 Out – number of array dimensions.

Zero (0) represents that the data for this

field is a scalar value. The values of 1 and 2
represent that the data is stored in a 1-
dimenional array and 2-dimensional array,

respectively.
dimSizes Integer*4 [] Out – array dimension sizes.

The value of the first element of this array
should be zero (0) if the data for this field is
a scalar value. If the data is stored in a 10x3

2-dimensional array, then the values of the
first and second element should be 10 and 3.

RETURNS:

status Integer*4 Status code.

C.4 High Level APIs

High level APIs allow users to perform sophisticated functions such as “get the records whose key

time is between time A and time B”, “get the time range (begin and end time) for the given TSO”,
“get the values for fields’x’ and ‘y’ for the key time between time A and time B”, and etc. High

85

level APIs make use of low level APIs as building blocks, often in combination with some

programming.

This section describes the APIs that address the commonly asked TSO questions by scientists. It

contains the APIs identified to date, and by no means, it represents a complete set. As additional
needs/functionalities are identified, this section will be modified to reflect the new requirements.

C.4.1 TSO Record Handling APIs

ExtractTSORecs (Integer*4 TSOId, String:22 startTime, String:22 endTime,

String:variable TSORecs[])

Note: The current version of the API could result in very large arrays of records being

returned. A future version may refine the API to simply create a new TSO with a different
TSOId to jointly refer to the required subset of TSO records. Then the other TSO record calls
could be used to process that subset.

It returns the TSO records whose key time falls between the user-specified start key time and
end key time in an array of TSO records (see the description of the GetTSORec API in

section 4.2 for a detailed description of the TSO record). Note that it’s user’s responsibility to
map the returned TSO record(s) into appropriate data types.

The number of records returned from the AskNumTSORecs call should be used in allocating
the needed space for the TSOrecs[] argument.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest

startTime String:22 In – user-specified start key time

endTime String:22 In – user-specified end key time

TSORecs String:variable [] Out – an array of TSO records that
satisfied the user-specified search criteria

RETURNS:

status Integer*4 Status code.

86

AskTotalTSORecs (Integer*4 TSOId, Integer*4 numRecs)

It returns the total number of TSO records stored in the given TSO.

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
numRecs Integer*4 Out - the total number of records in the

given TSO

RETURNS:

status Integer*4 Status code.

AskNumTSORecs (Integer*4 TSOId, String:22 startTime, String:22 endTime,
Integer*4 numRecs)

It returns the number of TSO records whose key time falls between the user-specified start
key time and end key time.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
startTime String:22 In – user-specified start key time
endTime String:22 In – user-specified end key time

numRecs Integer*4 Out - the number of records that satisfied
the user-specified search criteria

RETURNS:

status Integer*4 Status code.

87

Note: If future versions of the API move toward using record identifiers rather than record
numbers, calls to move to next and previous record (based on key times) would be useful.

AskTSORecNext (Integer*4 TSOId, Integer*4 recIdIn, Integer*4 recIdOut)

AskTSORecPrev (Integer*4 TSOId, Integer*4 recIdIn, Integer*4 recIdOut)

C.4.2 TSO Record Field Handling APIs

AskTSOFieldNames (Integer*4 TSOId, String:30 names[])

It returns the TSO field names defined for the given TSO.

The number of TSO fields returned from the AskNumTSOFields call should be used in

allocating the needed space for the names[] argument.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
names String:30 [] Out – an array that contains the TSO field

names that are defined for the given TSO.

RETURNS:

status Integer*4 Status code.

AskTSOFieldIds (Integer*4 TSOId, Integer*4 fieldIds[])

It returns the TSO field IDs defined for the given TSO.

The number of TSO fields returned from the AskNumTSOFields call should be used in

allocating the needed space for the fieldIds[] argument.

88

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest
fieldIds Integer*4 [] Out – an array that contains the identifiers

of the fields of interest.

RETURNS:

status Integer*4 Status code.

AskNumTSOFields (Integer*4 TSOId, Integer*4 numFields)

It returns the total number of TSO fields defined for the given TSO.

PARAMETERS:

TSOId Integer*4 In – the identifier of the TSO of interest.

numFields Integer*4 Out – the number of fields defined for the
given TSO

RETURNS:

status Integer*4 Status code.

AskNumDataValues (Integer*4 TSOId, String:22 startTime, String:22 endTime,
String:30 fieldNames[], Integer*4 numDataValues)

It determines and returns the total number of user-specified fields data values that fall
between the user-specified start key time and end key time.

This number should be used in allocating the needed space for the fieldData[] argument of the

AskTSOFieldsData and AskTSOFieldsData1 APIs.

PARAMETERS:

89

TSOId Integer*4 In - the identifier of the TSO of interest
startTime String:22 In – user-specified start key time
endTime String:22 In – user-specified end key time

fieldNames String:30 [] In – an array that contains the field names to
be searched. Each element of the array
represents a field name to be searched.

numDataValues Integer*4 Out – the total number of user-specified field
data values that fall between the user-
specified start key time and end key time and

return that number

RETURNS:

status Integer*4 Status code.

AskTSOFieldsData (Integer*4 TSOId, String:22 startTime,String:22 endTime,

String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])

It returns the user-specified field data whose record key time falls between the user-specified

start key time and end key time.

The number of data values returned from the AskNumDataValues call should be used in

allocating the needed space for the fieldNames[], numFields[], and fieldData[] arguments.
PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
startTime Sting:22 In – user-specified start key time
endTime String:22 In – user-specified end key time

fieldNames String:30 [] In – an array that contains the field names to be
searched. Each element of the array represents
a field name to be searched.

numFields Integer*4 [] Out – the number of data values extracted for

each field defined in fieldNames. The value of
the 1st element represents the number of data
values extracted for the first field defined in

90

fieldNames, 2nd element represents the number

of data values extracted for the second field
defined in fieldNames, and so on.

fieldData String:variable [] Out – extracted field data values. The values

are returned in the following format:

Array position Represents

1 – numFields[1] fieldNames[1]

numFields[1]+1 through fieldNames[2]

numFields[1]+numFields[2]
.
.

numFields[n-1]+1 through fieldNames[n]
numFields[n-1]+numFields[n]

Note:

• The size of the array element is determined

by the largest data type of user-specified
fields.

RETURNS:

status Integer*4 Status code.

AskTSOFieldsData1 (Integer*4 TSOId, String:22 startTime,String:22 endTime,
String:30 fieldNames[], Integer*4 numFields[], String:variable fieldData[])

It returns the user-specified field data whose record key time plus field ‘time offset’ falls
between the user-specified start key time and end key time.

The number of data values returned from the AskNumDataValues call should be used in
allocating the needed space for the FieldNames[], numFields[], and fieldData[] arguments.

91

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest
startTime String:22 In – user-specified start key time

endTime String:22 In – user-specified end key time
fieldNames String:30 [] In – an array that contains the field names to be

searched. Each element of the array represents

a field name to be searched.
numFields Integer*4 [] Out – the number of data values extracted for

each field defined in fieldNames. The value of

the 1st element represents the number of data
values extracted for the first field defined in
fieldNames, 2nd element represents the number

of data values extracted for the second field
defined in fieldNames, and so on.

fieldData String:variable [] Out – extracted field data values. The values
are returned in the following format:

Array position Represents
1 – numFields[1] fieldNames[1]

numFields[1]+1 through fieldNames[2]
numFields[1]+numFields[2]
.

.
numFields[n-1]+1 through fieldNames[n]
numFields[n-1]+numFields[n]

Note:

• The size of the array element is determined
by the largest data type of user-specified
fields.

RETURNS:

92

status Integer*4 Status code.

AskStartKeyTime (Integer*4 TSOId, String:22 startTime)
It returns the start key time for the given TSO. This time is the key time retrieved from the
first record.

(Convenience routine for
GetKeyTime(TSOId, 1, startTime)

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

startTime String:22 Out – the key time of the first record.

RETURNS:

status Integer*4 Status code.

AskEndKeyTime (Integer*4 TSOId, String:22 endTime)
It returns the end key time for the given TSO. This time is the key time retrieved from the

last record.
(Convenience routine for

GetTotalTSORecs(TSOId, numRecsTemp)

GetKeyTime(TSOId, numRecsTemp, endTime)

PARAMETERS:

TSOId Integer*4 In - the identifier of the TSO of interest

endTime String:22 Out – the key time of the last record.

RETURNS:

status Integer*4 Status code.

93

Note: If future versions of the API move toward using varying record sizes or varying field orders

within a TSO record, then calls to move to next and previous fields would be useful.

AskTSOFieldNext (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldIdIn,

Integer*4 fieldIdOut)

AskTSOFieldPrev (Integer*4 TSOId, Integer*4 recNum, Integer*4 fieldIdIn,

Integer*4 fieldIdOut)

